skip to main content


Search for: All records

Creators/Authors contains: "Scott, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In addition to the repulsive and attractive interaction forces described by Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, many charged colloid systems are stabilized by non-DLVO contributions stemming from specific material attributes. Here, we investigate non-DLVO contributions to the stability of polymer colloids stemming from the intra-particle glass transition temperature ( T g ). Flash nanoprecipitation is used to fabricate nanoparticles (NPs) from a library of polymers and dispersion stability is studied in the presence of both hydrophilic and hydrophobic salts. When adding KCl, stability undergoes a discontinuous decrease as T g increases above room temperature, indicating greater stability of rubbery NPs over glassy NPs. Glassy NPs are also found to interact strongly with hydrophobic phosphonium cations (PR 4 + ), yielding charge inversion and intermediate aggregation while rubbery NPs resist ion adsorption. Differences in the lifetime of ionic structuration within mobile surface layers is presented as a potential mechanism underlying the observed phenomenon. 
    more » « less
  2. ABSTRACT

    The Planck list of high-redshift source candidates (the PHz catalogue) contains 2151 peaks in the cosmic infrared background, unresolved by Planck’s 5 arcmin beam. Follow-up spectroscopic observations have revealed that some of these objects are $z\, {\approx }\, 2$ protoclusters and strong gravitational lenses but an unbiased survey has not yet been carried out. To this end, we have used archival Herschel-SPIRE observations to study a uniformly selected sample of 187 PHz sources. In contrast with follow-up studies that were biased towards bright, compact sources, we find that only one of our PHz sources is a bright gravitationally lensed galaxy (peak flux ${\gtrsim }\, 300$ mJy), indicating that such objects are rarer in the PHz catalogue than previously believed (<1 per cent). The majority of our PHz sources consist of many red, star-forming galaxies, demonstrating that typical PHz sources are candidate protoclusters. However, our new PHz sources are significantly less bright than found in previous studies and differ in colour, suggesting possible differences in redshift and star formation rate. None the less, 40 of our PHz sources contain ${\gt }\, 3\, \sigma$ galaxy overdensities, comparable to the fraction of ${\gt }\, 3\, \sigma$ overdensities found in earlier biased studies. We additionally use a machine-learning approach to identify less extreme (peak flux ${\sim }\, 100$ mJy) gravitationally lensed galaxies among Herschel-SPIRE observations of PHz sources, finding a total of seven candidates in our unbiased sample, and 13 amongst previous biased samples. Our new uniformly selected catalogues of ${\gt }\, 3\, \sigma$ candidate protoclusters and strong gravitational lenses provide interesting targets for follow up with higher resolution facilities, such as ALMA and JWST.

     
    more » « less
  3. Abstract We report new observations toward the hyperluminous dusty starbursting major merger ADFS-27 ( z  = 5.655), using the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). We detect CO ( J  = 2 → 1), CO ( J  = 8 → 7), CO ( J  = 9 → 8), CO ( J  = 10 → 9), and H 2 O (3 12  → 2 21 ) emission, and a P Cygni−shaped OH + (1 1  → 0 1 ) absorption/emission feature. We also tentatively detect H 2 O (3 21  → 3 12 ) and OH + (1 2 → 0 1 ) emission and CH + ( J  = 1 → 0) absorption. We find a total cold molecular mass of M gas  = (2.1 ± 0.2) × 10 11 ( α CO /1.0) M ⊙ . We also find that the excitation of the star-forming gas is overall moderate for a z > 5 dusty starburst, which is consistent with its moderate dust temperature. A high-density, high kinetic temperature gas component embedded in the gas reservoir is required to fully explain the CO line ladder. This component is likely associated with the “maximum starburst” nuclei in the two merging galaxies, which are separated by only 140 ± 13 km s −1 along the line of sight and 9.0 kpc in projection. The kinematic structure of both components is consistent with galaxy disks, but this interpretation remains limited by the spatial resolution of the current data. The OH + features are only detected toward the northern component, which is also the one that is more enshrouded in dust and thus remains undetected up to 1.6 μ m even in our sensitive new Hubble Space Telescope Wide Field Camera 3 imaging. The absorption component of the OH + line is blueshifted and peaks near the CO and continuum emission peak, while the emission is redshifted and peaks offset by 1.7 kpc from the CO and continuum emission peak, suggesting that the gas is associated with a massive molecular outflow from the intensely star-forming nucleus that supplies 125 M ⊙ yr −1 of enriched gas to its halo. 
    more » « less
  4. ABSTRACT

    The protocluster SPT2349−56 at $z = 4.3$ contains one of the most actively star-forming cores known, yet constraints on the total stellar mass of this system are highly uncertain. We have therefore carried out deep optical and infrared observations of this system, probing rest-frame ultraviolet to infrared wavelengths. Using the positions of the spectroscopically confirmed protocluster members, we identify counterparts and perform detailed source deblending, allowing us to fit spectral energy distributions in order to estimate stellar masses. We show that the galaxies in SPT2349−56 have stellar masses proportional to their high star formation rates, consistent with other protocluster galaxies and field submillimetre galaxies (SMGs) around redshift 4. The galaxies in SPT2349−56 have on average lower molecular gas-to-stellar mass fractions and depletion time-scales than field SMGs, although with considerable scatter. We construct the stellar-mass function for SPT2349−56 and compare it to the stellar-mass function of $z = 1$ galaxy clusters, finding consistent shapes between the two. We measure rest-frame galaxy ultraviolet half-light radii from our HST-F160W imaging, finding that on average the galaxies in our sample are similar in size to typical star-forming galaxies at these redshifts. However, the brightest HST-detected galaxy in our sample, found near the luminosity-weighted centre of the protocluster core, remains unresolved at this wavelength. Hydrodynamical simulations predict that the core galaxies will quickly merge into a brightest cluster galaxy, thus our observations provide a direct view of the early formation mechanisms of this class of object.

     
    more » « less
  5. ABSTRACT We present APEX-LABOCA 870-μm observations of the fields surrounding the nine brightest high-redshift unlensed objects discovered in the South Pole Telescope’s (SPT) 2500 deg2 survey. Initially seen as point sources by SPT’s 1-arcmin beam, the 19-arcsec resolution of our new data enables us to deblend these objects and search for submillimetre (submm) sources in the surrounding fields. We find a total of 98 sources above a threshold of 3.7σ in the observed area of 1300 arcmin2, where the bright central cores resolve into multiple components. After applying a radial cut to our LABOCA sources to achieve uniform sensitivity and angular size across each of the nine fields, we compute the cumulative and differential number counts and compare them to estimates of the background, finding a significant overdensity of $\delta \, {\approx }\,$10 at $S_{870}= 14$ mJy. The large overdensities of bright submm sources surrounding these fields suggest that they could be candidate protoclusters undergoing massive star formation events. Photometric and spectroscopic redshifts of the unlensed central objects range from $z= $3 to 7, implying a volume density of star-forming protoclusters of approximately 0.1 Gpc−3. If the surrounding submm sources in these fields are at the same redshifts as the central objects, then the total star formation rates of these candidate protoclusters reach 10 000 M⊙ yr−1, making them much more active at these redshifts than seen so far in either simulations or observations. 
    more » « less
  6. ABSTRACT We present an extensive ALMA spectroscopic follow-up programme of the $z\, {=}\, 4.3$ structure SPT2349–56, one of the most actively star-forming protocluster cores known, to identify additional members using their [C ii] 158 μm and CO(4–3) lines. In addition to robustly detecting the 14 previously published galaxies in this structure, we identify a further 15 associated galaxies at $z\, {=}\, 4.3$, resolving 55$\, {\pm }\,$5 per cent of the 870 μm flux density at 0.5 arcsec resolution compared to 21 arcsec single-dish data. These galaxies are distributed into a central core containing 23 galaxies extending out to 300 kpc in diameter, and a northern extension, offset from the core by 400 kpc, containing three galaxies. We discovered three additional galaxies in a red Herschel-SPIRE source 1.5 Mpc from the main structure, suggesting the existence of many other sources at the same redshift as SPT2349–56 that are not yet detected in the limited coverage of our data. An analysis of the velocity distribution of the central galaxies indicates that this region may be virialized with a mass of (9$\pm 5)\, {\times }\, 10^{12}$  M⊙, while the two offset galaxy groups are about 30 and 60 per cent less massive and show significant velocity offsets from the central group. We calculate the [C ii] and far-infrared number counts, and find evidence for a break in the [C ii] luminosity function. We estimate the average SFR density within the region of SPT2349–56 containing single-dish emission (a proper diameter of 720 kpc), assuming spherical symmetry, to be roughly 4$\, {\times }\, 10^4$ M⊙ yr−1 Mpc−3; this may be an order of magnitude greater than the most extreme examples seen in simulations. 
    more » « less
  7. null (Ed.)